Peer-reviewed publications

2023

Reinert, M., Lorenz, M., Klingbeil, K., Büchmann, B., & Burchard, H. (2023). High-Resolution Simulations of the Plume Dynamics in an Idealized 79°N Glacier Cavity Using Adaptive Vertical Coordinates. Journal of Advances in Modeling Earth Systems, 15(10), e2023MS003721. DOI: https://doi.org/10.1029/2023MS003721

2022

Andernach, M., Turton, J. V., and Mölg, T. (2022): Modeling cloud properties over the 79 N Glacier (Nioghalvfjerdsfjorden, NE Greenland) for an intense summer melt period in 2019. Q J Roy Meteor Soc, 148, 3566–3590, https://doi.org/10.1002/qj.4374

Stolzenberger, S., Rietbroek, R., Wekerle, C., Uebbing, B., & Kusche, J. (2022). Simulated signatures of Greenland melting in the North Atlantic: A model comparison with Argo floats, satellite observations, and ocean reanalysis. Journal of Geophysical Research: Oceans, 127, e2022JC018528. https://doi.org/10.1029/2022JC018528

Burchard, H., Bolding, K., Jenkins, A., Losch, M., Reinert, M., & Umlauf, L. (2022). The vertical structure and entrainment of subglacial melt water plumes. Journal of Advances in Modeling Earth Systems, 14, e2021MS002925. https://doi.org/10.1029/2021MS002925

2021

Christmann, J., Helm, V., Khan, S.A., Kleiner, T., Müller, R., Morlighem, M., Neckel, N., Rückamp, M., Steinhage, D., Zeising, O. & Humbert A. (2021): Elastic deformation plays a non-negligible role in Greenland’s outlet glacier flow. Commun Earth Environ 2, 232, https://doi.org/10.1038/s43247-021-00296-3.

Turton, J.V., Hochreuther, P., Reimann, N. and Blau, M.T. (2021):The distribution and evolution of supraglacial lakes on 79°N Glacier (north-eastern Greenland) and interannual climatic controls. The Cryosphere, 15, 3877-3896, https://doi.org/10.5194/tc-15-3877-2021

Blau, M., Turton, J., Sauter, T., & Mölg, T. (2021): Surface mass balance and energy balance of the 79N Glacier (Nioghalvfjerdsfjorden, NE Greenland) modeled by linking COSIPY and Polar WRF. Journal of Glaciology, 1-15, https://doi.org/10.1017/jog.2021.56.

Hochreuther, P., Neckel, N., Humbert, A., & Braun, M. (2021): Fully Automated Detection of Supraglacial Lake Area for Northeast Greenland Using Sentinel-2 Time-Series. Remote Sensing, 13(2), 205, https://doi.org/10.3390/rs13020205.

Huhn, O.,  Rhein, M.,  Kanzow, T.,  Schaffer, J., &  Sültenfuß, J. (2021):  Submarine meltwater from Nioghalvfjerdsbræ (79 North Glacier), Northeast GreenlandJournal of Geophysical Research: Oceans126, e2021JC017224. https://doi.org/10.1029/2021JC017224.

Kappelsberger, M. T.,  Strößenreuther, U.,  Scheinert, M.,  Horwath, M. Groh, A.,  Knöfel, C., et al. (2021): Modeled and observed bedrock displacements in north‐east Greenland using refined estimates of present‐day ice‐mass changes and densified GNSS measurementsJournal of Geophysical Research: Earth Surface,  126https://doi.org/10.1029/2020JF005860.

von Albedyll, L.,  Schaffer, J., &  Kanzow, T. (2021): Ocean variability at Greenland’s largest glacier tongue linked to continental shelf circulationJournal of Geophysical Research: Oceans,  126, e2020JC017080, https://doi.org/10.1029/2020JC017080.

2020

Buchhaupt C., Fenoglio-Marc L., Becker M., Kusche J. (2020): Impact of vertical water particle motions on Fully-Focused SAR Altimetry, Adv. Space Res.https://doi.org/10.1016/j.asr.2020.07.015.

Fenoglio L., S. Dinardo, B. Uebbing, C. Buchhaupt, M. Gärtner, J. Staneva, M. Becker, A. Klos, J. Kusche (2020): Advances in NE-Atlantic coastal sea level change monitoring from Delay Doppler Altimetry, Adv. Space Res.https://doi.org/10.1016/j.asr.2020.10.041.

Mohammadi-Aragh, M., Losch, M. and Goessling, H. F. (2020): Comparing Arctic sea ice model simulations to satellite observations by multiscale directional analysis of linear kinematic features, Monthly Weather Review 148.8, 3287-3303, https://doi.org/10.1175/MWR-D-19-0359.1.

Neckel N., Zeising O, Steinhage D, Helm V and Humbert A (2020): Seasonal Observations at 79°N Glacier (Greenland) From Remote Sensing and in situ Measurements, Front. Earth Sci, 8:142.  https://doi.org/10.3389/feart.2020.00142.

Schaffer, J., Kanzow, T., von Appen, W. et al. (2020): Bathymetry constrains ocean heat supply to Greenland’s largest glacier tongue. Nature Geoscience 13, 227–231, https://doi.org/10.1038/s41561-019-0529-x.

Strößenreuther, U., M. Horwath und L. Schröder (2020): How Different Analysis and Interpolation Methods Affect the Accuracy of Ice Surface Elevation Changes Inferred from Satellite Altimetry. Mathematical Geosciences, 52.4, pp. 499–525. https://doi.org/10.1007/s11004-019-09851-3.

Turton, J. V., Mölg, T., and Collier, E. (2020): High-resolution (1 km) Polar WRF output for 79° N Glacier and the northeast of Greenland from 2014 to 2018. Earth Syst. Sci. Data, 12, 1191–1202, https://doi.org/10.5194/essd-12-1191-2020.

2019

Christmann, J., Müller, R., and Humbert, A. (2019): On nonlinear strain theory for a viscoelastic material model and its implications for calving of ice shelves. Journal of Glaciology, 1-13. https://doi.org/10.1017/jog.2018.107.

Recinos, B., Maussion, F., Rothenpieler, T., and Marzeion, B. (2019): Impact of frontal ablation on the ice thickness estimation of marine-terminating glaciers in Alaska, The Cryosphere, 13, 2657–2672, https://doi.org/10.5194/tc-13-2657-2019.

Turton, JV., Mölg, T. and van As, D. (2019): Atmospheric processes and climatological characteristics of the 79N glacier (northeast Greenland). Monthly Weather Reviewhttps://doi.org/10.1175/MWR-D-18-0366.1.

Uebbing B., Kusche J., Rietbroek R. and Landerer F. W. (2019): Processing choices affect ocean mass estimates from GRACE. Journal of Geophysical Research: Oceans, 124, no. 2: 1029–44, https://doi.org/10.1029/2018JC014341.

Wagner, P., S. Rühs, F. Schwarzkopf, I. Koszalka, and A. Biastoch (2019): Can Lagrangian tracking simulate tracer spreading in a high-resolution Ocean General Circulation Model? Journal of Physical Oceanography 49 (5): 1141–1157, https://doi.org/10.1175/JPO-D-18-0152.1.

Bachelor- und Masterarbeiten

Ewerdwalbesloh, Yorck (2022): Finding coherent regions in the ocean in CMIP6 model simulations. (Masterarbeit), University of Bonn

Li, Mingyao (2022): AVGR: a python-based framework for estimating linear rate uncertainty in geodetic time series using Allan Variance. (Masterarbeit), University of Bonn

Andernach, Malena (2022): Cloud Properties over the 79N Glacier: Resolving Radiative and Thermal Impacts by Atmospheric Modeling. (Masterarbeit), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany, 125 pp.

Hoffmann, Otis (2021): A box model of a subglacial plume (Bachelorarbeit), University of Rostock.

Libuda, Philipp (2021): Model simulations of buoyant plumes under glacial ice (Masterarbeit), University of Rostock.

Heynen, Oliver (2020): Arktische Meereis-Variabilität im Meereisozeanmodell FESOM. (Bachelorarbeit), University of Bonn

Blau, Manuel (2020): Glacier-Atmosphere Modelling with COSIPY Surface Energy and Mass Balance Model at the Nioghalvfjerdsfjorden Glacier. (Masterarbeit), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany, 95 pp., https://books.google.de/books?id=eeHgzQEACAAJ.

Kappelsberger, Maria (2019): Untersuchungen zur Ermittlung von Eismassenänderungen und Krustendeformationen in Grönland aus der Kombination von Satellitenaltimetrie und Satellitengravimetrie Masterarbeit, TU Dresden.

Reimann, Nathalie (2019): Supraglacial lake detection on 79N glacier, Northeast Greenland, using Sentinel-2 imagery (Masterarbeit). Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany, 82 pp.

Albedyll, L. v. (2018): Structure and variability of the circulation at tidal to intra-seasonal time scales near the 79 North Glacier, Master thesis, Uni Bremen, hdl:10013/epic.31fe6a83-74cc-4e81-a4b7-6d0e4cc62d19.

Specht, Mia S. (2018): Variability of Atlantic Water inflow onto the shelf of North-East Greenland. (Masterarbeit), Christian-Albrechts-Universität Kiel, Kiel, Germany, 67 pp., http://eprints.uni-kiel.de/id/eprint/45150.

Lunz, Susanne (2018): Analyse von GNSS-Messungen zur Bestimmung der rezenten Deformation der Erdkruste in Nordost-Grönland, Masterarbeit, TU Dresden.

Manne, Malte (2017): Detektion supraglazialer Schmelzwasserseen auf dem 79°N Gletscher (Grönland) mittels Fernerkundungsdaten (Masterarbeit). Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany, 64 pp.

Published datasets

Huhn, O., Rhein, M., Bulsiewicz, K., Sültenfuß, J. (2021): Noble gas (He, Ne isotopes) and transient tracer (CFC-11 and CFC-12) measurements from POLARSTERN cruise PS100 (northeast Greenland, 2016). PANGAEA, https://www.doi.org/10.1594/PANGAEA.931336    

Turton, J., Blau, M., Sauter, T., Mölg, T. (2021): COSIPY-WRF Daily SMB output 2014-2018. Zenodo, https://www.doi.org/10.5281/zenodo.4434259 

Turton, J. (2020): Polar WRF output for 2014-2018 for the 79°N Glacier and NE Greenland. OSF, https://www.doi.org/10.17605/OSF.IO/53E6Z 

Konferenzbeiträge

Doglioni, F., Kanzow, T., Humbert, A., Rhein, M., Marzeion, B, Scheinert, M., Horwarth, M., Braun, M., Mölg, T., Burchard, H., Kusche, J., GROCE community (2023): Greenland Ice Sheet-Ocean Interaction:process-based understanding of the 79 North Glacier melt., ASOF workshop 2023, Las Palmas de Gran Canaria, 10-12 May 2023, file.

Bahrami, Z., Lutz, K., and Braun, M. (2023): Estimating Supraglacial Lake Area for Greenland using Sentinel-2 Images and Deep Learning, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-15826, https://doi.org/10.5194/egusphere-egu23-15826

Reinert M., Lorenz M., Klingbeil K., Burchard H. (2022): Understanding the melting of Greenland's largest glacial ice tongue with high-resolution modelling and adaptive coordinates. EGU General Assembly, Vienna, Austria, 23–27 May 2022. https://doi.org/10.5194/egusphere-egu22-2903

Turton, J., Mattingly, K., and Mölg, T. (2021): The influence of atmospheric rivers on winter melt and accumulation in the northeast of Greenland., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6137, https://www.doi.org/10.5194/egusphere-egu21-6137 

Huhn, O., Rhein, M., Bulsiewicz, K., Kanzow, T., Schaffer, J., Sültenfuß, J. (2021): Submarine Melt Water from the 79 North Glacier (79NG, Nioghalvfjerdsbræ), northeast Greenland. EGU General Assembly 2021, CR2.4, EGU21-2098

Reinert, M., Lorenz, M., Klingbeil, K., Burchard, H. (2021): High-resolution modelling of ice-covered glacier fjords in Greenland. 10th Warnemünde Turbulence Days, online, 6–9 December 2021.

Outreach material

Turton, J. (2021): Interview on "Climate change and Glaciology", Friedrich-Alexander-University Erlangen-Nürnberg Youtube channel, https://www.youtube.com/watch?v=shTRBjQDwh8 

Humbert, A. (2022): talk at TEDx Dornbirn "The Complex Life of Ice Sheets", TEDx Talks Youtube channel, https://www.youtube.com/watch?v=HsbKqLN6KyA

Christmann J., Humbert, A. (2022): blog post "Investigating Glacier Motion with Viscoelastic Ice Simulations", COMSOL Multiphysics website, https://www.comsol.com/blogs/investigating-glacier-motion-with-viscoelastic-ice-simulations/ 

Petrillo A., Christmann J., Humbert, A. (2022): article (based on blog) "Forecasting the Ice Loss of Greenland’s Glaciers with Viscoelastic Modeling", COMSOL Multiphysics website, https://www.comsol.com/story/forecasting-the-ice-loss-of-greenland-s-glaciers-with-viscoelastic-modeling-106471 

GROCE Posters

Allgemeine GROCE-Poster, die auf internationalen Konferenzen präsentiert werden, sind hier gesammelt:

PalMod Workshop, EGU 2018. Den Download des Posters gibt es hier.  

ASOF meeting 2023. Den Download des Posters gibt es hier.

Projektförderung

Koordination

Prof. Dr. Torsten Kanzow

Alfred-Wegener-Institut 
Klußmannstraße. 3d  
27570 Bremerhaven
+49(471)4831-2913 
Torsten.Kanzow@awi.de

Website: janin.schaffer@awi.de
Mario.Hoppmann@awi.de

Social Media

Projektpartner