Peer-reviewed publications


Andernach, M., Turton, J. V., and Mölg, T. (2022): Modeling cloud properties over the 79 N Glacier (Nioghalvfjerdsfjorden, NE Greenland) for an intense summer melt period in 2019. Q J Roy Meteor Soc, 148, 3566–3590,

Stolzenberger, S., Rietbroek, R., Wekerle, C., Uebbing, B., & Kusche, J. (2022). Simulated signatures of Greenland melting in the North Atlantic: A model comparison with Argo floats, satellite observations, and ocean reanalysis. Journal of Geophysical Research: Oceans, 127, e2022JC018528.

Burchard, H., Bolding, K., Jenkins, A., Losch, M., Reinert, M., & Umlauf, L. (2022). The vertical structure and entrainment of subglacial melt water plumes. Journal of Advances in Modeling Earth Systems, 14, e2021MS002925. 


Christmann, J., Helm, V., Khan, S.A., Kleiner, T., Müller, R., Morlighem, M., Neckel, N., Rückamp, M., Steinhage, D., Zeising, O. & Humbert A. (2021): Elastic deformation plays a non-negligible role in Greenland’s outlet glacier flow. Commun Earth Environ 2, 232,

Turton, J.V.Hochreuther, P., Reimann, N. and Blau, M.T. (2021):The distribution and evolution of supraglacial lakes on 79°N Glacier (north-eastern Greenland) and interannual climatic controls. The Cryosphere, 15, 3877-3896,

Blau, M., Turton, J., Sauter, T., & Mölg, T. (2021): Surface mass balance and energy balance of the 79N Glacier (Nioghalvfjerdsfjorden, NE Greenland) modeled by linking COSIPY and Polar WRF. Journal of Glaciology, 1-15,

Hochreuther, P., Neckel, N., Humbert, A., & Braun, M. (2021): Fully Automated Detection of Supraglacial Lake Area for Northeast Greenland Using Sentinel-2 Time-Series. Remote Sensing, 13(2), 205,

Huhn, O.,  Rhein, M.,  Kanzow, T.,  Schaffer, J., &  Sültenfuß, J. (2021):  Submarine meltwater from Nioghalvfjerdsbræ (79 North Glacier), Northeast GreenlandJournal of Geophysical Research: Oceans126, e2021JC017224.

Kappelsberger, M. T.,  Strößenreuther, U.,  Scheinert, M.,  Horwath, M. Groh, A.,  Knöfel, C., et al. (2021): Modeled and observed bedrock displacements in north‐east Greenland using refined estimates of present‐day ice‐mass changes and densified GNSS measurementsJournal of Geophysical Research: Earth Surface,  126

von Albedyll, L.,  Schaffer, J., &  Kanzow, T. (2021): Ocean variability at Greenland’s largest glacier tongue linked to continental shelf circulationJournal of Geophysical Research: Oceans,  126, e2020JC017080,


Buchhaupt C., Fenoglio-Marc L., Becker M., Kusche J. (2020): Impact of vertical water particle motions on Fully-Focused SAR Altimetry, Adv. Space Res.

Fenoglio L., S. Dinardo, B. Uebbing, C. Buchhaupt, M. Gärtner, J. Staneva, M. Becker, A. Klos, J. Kusche (2020): Advances in NE-Atlantic coastal sea level change monitoring from Delay Doppler Altimetry, Adv. Space Res.

Mohammadi-Aragh, M., Losch, M. and Goessling, H. F. (2020): Comparing Arctic sea ice model simulations to satellite observations by multiscale directional analysis of linear kinematic features, Monthly Weather Review 148.8, 3287-3303,

Neckel N., Zeising O, Steinhage D, Helm V and Humbert A (2020): Seasonal Observations at 79°N Glacier (Greenland) From Remote Sensing and in situ Measurements, Front. Earth Sci, 8:142.

Schaffer, J., Kanzow, T., von Appen, W. et al. (2020): Bathymetry constrains ocean heat supply to Greenland’s largest glacier tongue. Nature Geoscience 13, 227–231,

Strößenreuther, U., M. Horwath und L. Schröder (2020): How Different Analysis and Interpolation Methods Affect the Accuracy of Ice Surface Elevation Changes Inferred from Satellite Altimetry. Mathematical Geosciences, 52.4, pp. 499–525.

Turton, J. V., Mölg, T., and Collier, E. (2020): High-resolution (1 km) Polar WRF output for 79° N Glacier and the northeast of Greenland from 2014 to 2018. Earth Syst. Sci. Data, 12, 1191–1202,


Christmann, J., Müller, R., and Humbert, A. (2019): On nonlinear strain theory for a viscoelastic material model and its implications for calving of ice shelves. Journal of Glaciology, 1-13.

Recinos, B., Maussion, F., Rothenpieler, T., and Marzeion, B. (2019): Impact of frontal ablation on the ice thickness estimation of marine-terminating glaciers in Alaska, The Cryosphere, 13, 2657–2672,

Turton, JV., Mölg, T. and van As, D. (2019): Atmospheric processes and climatological characteristics of the 79N glacier (northeast Greenland). Monthly Weather Review

Uebbing B., Kusche J., Rietbroek R. and Landerer F. W. (2019): Processing choices affect ocean mass estimates from GRACE. Journal of Geophysical Research: Oceans, 124, no. 2: 1029–44,

Wagner, P., S. Rühs, F. Schwarzkopf, I. Koszalka, and A. Biastoch (2019): Can Lagrangian tracking simulate tracer spreading in a high-resolution Ocean General Circulation Model? Journal of Physical Oceanography 49 (5): 1141–1157,

Bachelor and Master theses

Ewerdwalbesloh, Yorck (2022): Finding coherent regions in the ocean in CMIP6 model simulations. (Masterarbeit), University of Bonn

Li, Mingyao (2022): AVGR: a python-based framework for estimating linear rate uncertainty in geodetic time series using Allan Variance. (Masterarbeit), University of Bonn

Andernach, Malena (2022): Cloud Properties over the 79N Glacier: Resolving Radiative and Thermal Impacts by Atmospheric Modeling. (Masterarbeit), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany, 125 pp.

Hoffmann, Otis (2021): A box model of a subglacial plume (Bachelorarbeit), University of Rostock.

Libuda, Philipp (2021): Model simulations of buoyant plumes under glacial ice (Masterarbeit), University of Rostock.

Heynen, Oliver (2020): Arktische Meereis-Variabilität im Meereisozeanmodell FESOM. (Bachelorarbeit), University of Bonn

Blau, Manuel (2020): Glacier-Atmosphere Modelling with COSIPY Surface Energy and Mass Balance Model at the Nioghalvfjerdsfjorden Glacier. (Masterarbeit), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany, 95 pp.,

Kappelsberger, Maria (2019): Untersuchungen zur Ermittlung von Eismassenänderungen und Krustendeformationen in Grönland aus der Kombination von Satellitenaltimetrie und Satellitengravimetrie Masterarbeit, TU Dresden.

Reimann, Nathalie (2019): Supraglacial lake detection on 79N glacier, Northeast Greenland, using Sentinel-2 imagery (Masterarbeit). Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany, 82 pp.

Albedyll, L. v. (2018): Structure and variability of the circulation at tidal to intra-seasonal time scales near the 79 North Glacier, Master thesis, Uni Bremen, hdl:10013/epic.31fe6a83-74cc-4e81-a4b7-6d0e4cc62d19.

Specht, Mia S. (2018): Variability of Atlantic Water inflow onto the shelf of North-East Greenland. (Masterarbeit), Christian-Albrechts-Universität Kiel, Kiel, Germany, 67 pp.,

Lunz, Susanne (2018): Analyse von GNSS-Messungen zur Bestimmung der rezenten Deformation der Erdkruste in Nordost-Grönland, Masterarbeit, TU Dresden.

Manne, Malte (2017): Detektion supraglazialer Schmelzwasserseen auf dem 79°N Gletscher (Grönland) mittels Fernerkundungsdaten (Masterarbeit). Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany, 64 pp.

Published datasets

Huhn, O., Rhein, M., Bulsiewicz, K., Sültenfuß, J. (2021): Noble gas (He, Ne isotopes) and transient tracer (CFC-11 and CFC-12) measurements from POLARSTERN cruise PS100 (northeast Greenland, 2016). PANGAEA,    

Turton, J., Blau, M., Sauter, T., Mölg, T. (2021): COSIPY-WRF Daily SMB output 2014-2018. Zenodo, 

Turton, J. (2020): Polar WRF output for 2014-2018 for the 79°N Glacier and NE Greenland. OSF, 

Conference contributions

Doglioni, F., Kanzow, T., Humbert, A., Rhein, M., Marzeion, B, Scheinert, M., Horwarth, M., Braun, M., Mölg, T., Burchard, H., Kusche, J., GROCE community (2023): Greenland Ice Sheet-Ocean Interaction:process-based understanding of the 79 North Glacier melt., ASOF workshop 2023, Las Palmas de Gran Canaria, 10-12 May 2023, file.

Bahrami, Z., Lutz, K., and Braun, M. (2023): Estimating Supraglacial Lake Area for Greenland using Sentinel-2 Images and Deep Learning, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-15826,

Reinert M., Lorenz M., Klingbeil K., Burchard H. (2022): Understanding the melting of Greenland's largest glacial ice tongue with high-resolution modelling and adaptive coordinates. EGU General Assembly, Vienna, Austria, 23–27 May 2022.

Turton, J., Mattingly, K., and Mölg, T. (2021): The influence of atmospheric rivers on winter melt and accumulation in the northeast of Greenland., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6137, 

Huhn, O., Rhein, M., Bulsiewicz, K., Kanzow, T., Schaffer, J., Sültenfuß, J. (2021): Submarine Melt Water from the 79 North Glacier (79NG, Nioghalvfjerdsbræ), northeast Greenland. EGU General Assembly 2021, CR2.4, EGU21-2098

Reinert, M., Lorenz, M., Klingbeil, K., Burchard, H. (2021): High-resolution modelling of ice-covered glacier fjords in Greenland. 10th Warnemünde Turbulence Days, online, 6–9 December 2021.

Outreach material

Turton, J. (2021): Interview on "Climate change and Glaciology", Friedrich-Alexander-University Erlangen-Nürnberg Youtube channel, 

Humbert, A. (2022): talk at TEDx Dornbirn "The Complex Life of Ice Sheets", TEDx Talks Youtube channel,

Christmann J., Humbert, A. (2022): blog post "Investigating Glacier Motion with Viscoelastic Ice Simulations", COMSOL Multiphysics website, 

Petrillo A., Christmann J., Humbert, A. (2022): article (based on blog) "Forecasting the Ice Loss of Greenland’s Glaciers with Viscoelastic Modeling", COMSOL Multiphysics website, 

GROCE Posters

General GROCE Posters presented during international conferences are collected here:

EGU General Assembly 2018. Download is available here.  

ASOF meeting 2023. Download is available here.  

Project funding


Prof. Dr. Torsten Kanzow

Klußmannstraße. 3d  
27570 Bremerhaven


Social Media

Project partner