Peer-reviewed publications

Wagner, P., S. Rühs, F. Schwarzkopf, I. Koszalka, and A. Biastoch, 2019: Can Lagrangian tracking simulate tracer spreading in a high-resolution Ocean General Circulation Model? Journal of Physical Oceanography

To model tracer spreading in the ocean, Lagrangian simulations in an offline framework are a practical and efficient alternative to solving the advective-diffusive tracer equations online. Differences in both approaches raise the question whether both methods are comparable. Lagrangian simulations usually use model output averaged in time, and trajectories are not subject to parameterized subgrid diffusion which is included in the advection-diffusion equations of ocean models...

Turton, JV., Mölg, T. and van As, D. Atmospheric processes and climatological characteristics of the 79N glacier (northeast Greenland). Monthly Weather Review.

The Nioghalvfjerdsfjorden glacier (the 79 fjord, henceforth referred to as 79N) has been thinning and accelerating since the early 2000s, as a result of calving episodes at the front of the glacier. As 8% of the Greenland Ice Sheet area drains into 79N, changes in the stability of 79N could propagate into the interior of Greenland. Despite this concern, relatively little is known about the atmospheric conditions over 79N. We present the surface atmospheric processes and climatology of the 79N region from analyses of data from four automatic weather stations (AWS) and reanalysis data from ERA-Interim..

Pre-print

Recinos B, Maussion F, Rothenpieler T, Marzeion B (2018): Impact of frontal ablation on the ice thickness estimation of marine-terminating glaciers in Alaska. The Cryosphere Discuss.

Frontal ablation is a major component of the mass budget of tidewater glaciers, strongly affecting their dynamics. Most global scale ice volume estimates to date still suffer from considerable uncertainties related to i) the implemented frontal ablation parameterisation or ii) for not accounting for frontal ablation at all in the glacier model. To improve estimates of the ice thickness distribution of glaciers it is thus important to identify and test low-cost and robust parameterisations of this fundamental process. By implementing such parameterisation into the ice-thickness estimation module of the Open Global Glacier Model (OGGM v1.0.1), we conduct a first assessment of the impact of accounting for frontal ablation on the estimate of ice stored in glaciers in Alaska.

Dissertations

Schaffer, J. (2017): Ocean impact on the 79 North Glacier, Northeast Greenland PhD thesis, University of Bremen. 

The retreat and acceleration of marine-terminating glaciers around the coast of Greenland observed over the last two decades have partly been attributed to a warming of Atlantic Water (AW) circulating around the subpolar North Atlantic. This thesis investigates the impact of the ocean circulation on the 79 North Glacier (79NG), which has Greenland’s largest floating ice tongue. One overall hypothesis tested in this thesis is whether a long-term warming of AW in Fram Strait has spread across the continental shelf o ↵ Northeast Greenland (NEG) toward the 79NG, which may explain the recent thinning observed at the floating ice tongue.

Master theses

Specht, Mia S. (2018): Variability of Atlantic Water inflow onto the shelf of North-East Greenland. (Masterarbeit), Christian-Albrechts-Universität Kiel, Kiel, Germany, 67 pp.

Lunz, Susanne: Analyse von GNSS-Messungen zur Bestimmung der rezenten Deformation der Erdkruste in Nordost-Grönland, Masterarbeit, TU Dresden, 2018

Kappelsberger, Maria: Untersuchungen zur Ermittlung von Eismassenänderungen zund Krustendeformationen in Grönland aus der Kombination von Satellitenaltimetrie und Satellitengravimetrie Masterarbeit, TU Dresden, 2019

Miscellaneous

General GROCE Poster presented during EGU General Assembly 2018. Download is available here.  

Project funding

Coordination

Prof. Dr. Torsten Kanzow

Alfred-Wegener-Institut
Bussestraße 24
27568 Bremerhaven
+49(471)4831-2913
Torsten.Kanzow@awi.de

Website: Mario.Hoppmann@awi.de

Social Media

Project parters