Literatur zum Thema

  1. Milne, G.A., Gehrels, W.R., Hughes C.W., Tamisiea, M.E. (2009): Identifying the causes of sea-level change. Nature Geoscience volume 2, pp 471–478 (2009), doi:10.1038/ngeo544
  2. Groh, A., Ewert, H., Fritsche, M., Rülke, A., Rosenau, R., Scheinert, M., Dietrich R. (2014): Assessing the current evolution of the Greenland Ice Sheet by means of satellite and ground-based observations. Surv. Geophys., doi: 10.1007/s10712-014-9287-x.
  3. Rietbroek R., S.-E. Brunnabend, J. Kusche, J. Schröter, and C. Dahle. 2016. Revisiting the contemporary sea-level budget on global and regional scales Physical Sciences - Earth, Atmospheric, and Planetary Sciences: PNAS 2016 113 (6) 1504-1509, doi: 10.1073/pnas.1519132113.
  4. Shepherd, A. et al (2012). A Reconciled Estimate of Ice-Sheet Mass Balance. Science, 338.6111, pp. 1183–1189.
  5. Velicogna, I., Wahr, J. (2013): Time-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data. Geophys. Res. Lett., 40(12), 3055–3063.
  6. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change(Stocker, T.F. et al., eds), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  7. Khan S A et al (2014) Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming Nat. Clim. Change 4, 292–9.
  8. Fichefet, T. et al. Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century. Geophys. Res. Lett. 30, 1911 (2003).
  9. Hawkins, E. et al. Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys. Res. Lett. 38, L10605 (2011).
  10. Brunnabend, S. E., Schröter, J., Rietbroek, R., Kusche, J. (2015) Regional sea level change in response to ice mass loss in Greenland, the West Antarctic and Alaska. J. Geophys. Res. Oceans 120, 7316–7328.
  11. Yang, Q. et al. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat. Commun. 7:10525 doi: 10.1038/ncomms10525 (2016).
  12. Bhatia, M., E. B. Kujawinski, Sarah B. Das, Crystaline F. Breier, Paul B. Henderson, Matthew A. Charette, 2013. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nature Geoscience 6, doi: 10.1038/ngeo1746.
  13. Wadham et al (2016) Sources, cycling and export of nitrogen on the Greenland Ice Sheet Biogeosciences Discuss doi: 10.5194/bg-2015-484.
  14. Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A. Levermann, M.A. Merrifield, G.A. Milne, R.S. Nerem, P.D. Nunn, A.J. Payne, W.T. Pfeffer, D. Stammer and A.S. Unnikrishnan, 2013: Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  15. Howat, I. M., Joughin, I., Fahnestock, M., Smith, B. E. and Scambos, T. 2008. Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000-2006; Ice dynamics and coupling to climate. Journal of Glaciology, 54, 187, 646-660.
  16. Rignot E. and Kanagaratnam,P. 2006. Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5763), 986. doi: 10.1126/science.1121381.
  17. Moon, T., I. Joughin, B. Smith, and I. Howat (2012), 21st-century evolution of Greenland outlet glacier velocities, Science, vol. 336 (6081).
  18. Joughin, I., Smith, B.E., Shean, D.E., Floricioiu, D., Brief Communication (2014): Further summer speedup of Jakobshavn Isbrae, The Cryosphere, 8, 209-214, doi: 10.5194/tc-8-209-2014.
  19. Helm, V., Humbert, A., and Miller, H.: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2 (2014), The Cryosphere, 8, 1539-1559, doi: 10.5194/tc-8-1539-2014
  20. Bolch, T., Sandberg Sørensen, L., Simonsen, S. B., Mölg, N., Machguth, H., Rastner, P., Paul, F. (2013). Mass loss of Greenland's glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophysical Research Letters, 40(5), 875-881.
  21. Marzeion, B., Leclercq, P. W., Cogley, J. G., & Jarosch, A. H. (2015). Brief Communication: Global reconstructions of glacier mass change during the 20th century are consistent. The Cryosphere, 9(6), 2399-2404.
  22. Murray, T., Scharrer, K., James, T.D., Dye, S.R., Hanna, E., Booth, A.D., Selmes, N., Luckman, A.,  Hughes, A.L.C, Cook, S., Huybrechts, P. 2010. Ocean-regulation hypothesis for glacier dynamics in south-east Greenland and implications for ice-sheet mass changes. J. Geophys. Res, 115, F03026, 15 doi: 10.1029/2009JF001522.
  23. Straneo, F., Hamilton, G.S, Sutherland, D.A., Stearns, L.A. and Rosing-Asvid, A.. 2010. Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nature Geoscience, 3, 182-186, doi: 10.1038/ngeo764.
  24. Vieli, A. and F.M. Nick, 2011: Understanding and modeling rapid dynamical changes of tidewater outlet glaciers: issues and implications. Surv. Geophys. 32, 437–458, doi: 10.1007/s10712-011-9132-4.
  25. Rignot, E., M. Koppes, and I. Velicogna (2010), Rapid submarine melting of the calving faces of west Greenland glaciers, Nat. Geosci., 3, 187–191, doi: 10.1038/ngeo765.
  26. Motyka, R.J., M. Truffer, M. Fahnestock, J. Mortenson, S. Rysgaard, and I. Howat, 2011: Submarine melting of the 1985 JakobshavnIsbrae floating ice tongue and the triggering of the current retreat. J. Geophys. Res., 116, F01007, doi: 10.1029/2009JF001632.
  27. Enderlin, E. M. and I. M. Howat, 2013. Submarine Melt Rate Estimates for Floating Termini of Greenland Outlet Glaciers (2000-2010). J.Glaciol., 59(213), 67-75, doi: 10.3189/2013JoG12J049.
  28. Mölg T., Kaser G. (2011): A new approach to resolving climate-cryosphere relations: Downscaling climate dynamics to glacier-scale mass and energy balance without statistical scale linking. Journal of Geophysical Research, 116: D16101, doi: 10.1029/2011JD015669.
  29. Straneo, F., Heimbach, P., Sergienko, O., Hamilton, G., Catania, G., Griffies, S. and others, 2013. Challenges to understanding the dynamic response of Greenland's marine terminating glaciers to oceanic and atmospheric forcing. Bull. Am. Meteorological Society, 94(8), 1131-1144.
  30. Perner, K., M. Moros, A. Jennings, J. M. Lloyd and K. L. Knudsen (2013). Holocene palaeoceanographic evolution off West Greenland. Holocene 23: 374-387, doi: 10.1177/0959683612460785.
  31. Ouellet-Bernier, M.A., C. Hillaire-Marcel, and M. Moros (2014) Paleoceanographic changes in the Disko Bugt area, West Greenland, during the Holocene The Holocene November 2014 vol. 24 no. 11 1573-1583 doi: 10.1177/0959683614544060.
  32. Holland, D.M, Thomas, R. H., de Young, B., Ribergaard, M. and Lyberth, B. 2008. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geoscience, 1, 659 – 664, doi: 10.1038/ngeo316.
  33. Straneo, F., Curry, R., Sutherland, D.A., Hamilton, G., Cenedese, C., Väge, K. and Stearns, L.A.  2011. Impact of fjord dynamics and subglacial discharge on the circulation near Helheim Glacier in Greenland. Nature Geoscience 4, pp 332-327, doi: 10.1038.ngeo1109.
  34. Marzeion, B., Jarosch, A. H., Hofer, M. (2012a). Past and future sea-level change from the surface mass balance of glaciers. The Cryosphere, 6(6), 1295-1322.
  35. Bersch, M., I. Yashayaev, and K. P. Koltermann (2007), Recent changes of the thermohaline circulation in the subpolar North Atlantic, Ocean Dynamics, 57 (3), 223-235, doi: 10.1007/s10236-007-0104-7.
  36. Schauer, U., Beszczynska-Möller, A., Walczowski, W., Fahrbach, E., Piechura, J., Hansen, E. 2008. Variation of measured heat flow through the Fram Strait between 1997 and 2006. In: Dickson,  R.R., Meincke, J., Rhines, P. (Eds), Arctic-Subarctic Ocean Fluxes, Springer, Dordrecht, pp. 65-85.
  37. Beszczynska-Möller, A., E. Fahrbach, U. Schauer, and E. Hansen (2012), Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997-2010, ICES Journal of Marine Science: Journal du Conseil, 69 (5), 852{863, doi: 10.1093/icesjms/fss056.
  38. Mouginot J., E. Rignot, B. Scheuchl, I. Fenty, A. Khazendar, M. Morlighem, A. Buzzi, J. Paden, Fast retreat of Zachariæ Isstrøm, northeast Greenland. 2015. Science Vol. 350, 6266, pp. 1357- 1361, DOI: 10.1126/science.aac7111.
  39. BMBF (2015): Forschung für Nachhaltige Entwicklung – FONA3. Rahmenprogramm des Bundesministeriums für Forschung und Bildung. 44 Seiten.
  40. Huhn, O., H. H. Hellmer, M. Rhein, W. Roether, C. Rodehacke, M. Schodlok, and M. Schröder, 2008. Evidence of deep and bottom water formation in the western Weddell Sea. Deep-Sea Research II, 55/8-9, pp. 1098-1116, doi: 10.1016/j.dsr2.2007.12.015.
  41. Huybrechts, P. (2002): Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles, Quat. Sc. Rev., 21: 203-231 Khan S A et al., 2015. Rep. Prog. Phys. 78 046801.
  42. Rabe, B., P. A. Dodd, E. Hansen, E. Falck, U. Schauer, A. Mackensen, A. Beszczynska-Möller, G. Kattner, E. J. Rohling, and K. Cox (2013), Export of Arctic freshwater components through the Fram Strait 1998–2011, Ocean Sci., 9, 91–109, doi: 10.5194/os-9-91-2013.

  43. Rabe, B.,M. Karcher, F. Kauker, U. Schauer, J. M. Toole, R. A. Krishfield, S. Pisarev, T. Kikuchi, and J. Su (2014), Arctic Ocean basin liquid freshwater storage trend 1992–2012, Geophys. Res. Lett., 41, 961–968, doi: 10.1002/2013GL058121.
  44. Simpson, M.J.R, Milne, G.A, Huybrechts, P, Long, A.J (2009): Calibrating a glaciological model of the Green-land ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quat. Sci. Rev. 28, 1631-1657, doi: 10.1016/j.quascirev.2009.03.004.
  45. Simpson, M.J.R., Wake, L., Milne, G.A., Huybrechts, P. (2011): The influence of decadal‐ to millennialscale ice mass changes on present‐day vertical land motion in Greenland: Implications for the interpretation of GPS observations. J. Geophys. Res., 116, B02406, doi: 10.1029/2010JB007776.